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This paper explores the role of testing in models of asymmetric information. We demonstrate
conditions under which testing for underlying characteristics can overcome adverse selection
problems and lead to a full-information competitive equilibrium. This paper provides a more
general statement of Mirrlees result on the optimal use of infinite fines. Where testing cannot
fully resolve the problems associated with asymmetric information, we outline the source of the
difficulties. Our results, developed in the context of a labour market, can be directly extended to
other environments. In problems with asymmetric information, testing to discover an agent’s
chosen action or underlying characteristics may significantly reduce the cost of moral hazard and
adverse selection.

1. INTRODUCTION

Models of self-selection illustrate the effects of asymmetric information in a wide range
of economic environments. Examples of such environments are labour, capital, and
insurance markets, taxation, regulation, education and law enforcement'. Typically, the
absence of complete information about an agent’s characteristics or chosen actions leads
to a second-best equilibrium. An inefficiency arises because agents are indirectly motivated
to behave honestly. Few studies (with the notable exception of Guasch and Weiss (1980),
(1981), (1982a, b)) consider tests that directly discover an individual’s true characteristics
or actions. Such testing can reduce the cost of adverse selection and moral hazard.
Indeed, we demonstrate conditions under which testing leads to the full-information
competitive equilibrium.

The power of testing lies in its ability to provide information about the underlying
characteristics of individuals. It helps determine whether their actions or signals represent
truthful behaviour. Naturally, the effectiveness of testing as a self-selection device depends
on its accuracy, its cost, the frequency of use, and the rewards for test performance. As
always, economic tradeoffs must be considered. Greater accuracy may be possible only
at higher cost. Lower frequencies of testing must be offset by larger penalties for failing,
imposing costs on risk averse agents.?

These tradeoffs may lead to outcomes that deviate from the full-information alloca-
tion. It is not always possible to achieve a first-best allocation in models with asymmetric
information and risk-averse agents; however, when the testing frequency, accuracy, and
penalty size are coordinated optimally, under certain conditions, the full-information
competitive equilibrium can be approached in the limit. This is accomplished by using
a more expensive and more accurate test less frequently with an increased penalty for
failure.
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266 REVIEW OF ECONOMIC STUDIES

Three conditions must be satisfied to achieve the first-best: (i) risk-averse agents
must know their own characteristics with certainty; (ii) agents’ utility functions must be
unbounded below; (iii) those characteristics initially unobservable to the principal must
be verifiable ex post with arbitrarily high “accuracy” (in a sense to be made precise later)
even if only at arbitrarily high cost.

These three conditions are satisfied in Mirrlees’ (1974) model of moral hazard in the
labour market. Agents know how hard they work and thus condition (i) is satisfied.
Agents’ utility functions are unbounded below, satisfying condition (ii). In Mirrlees’
model an agent’s effort is unobservable. The principal attempts to determine an agent’s
chosen effort by observing output. Mirrlees demonstrates conditions under which a very
low output quota provides an arbitrarily accurate test of whether an agent chose the
appropriate level of effort. Condition (iii) is therefore satisfied and the full-information
outcome is approached in the limit.

In Mirrlees’ model, output is costlessly observed. Because testing is free, all agents
are tested. This paper generalizes Mirrlees’ result to the case where testing is costly and
used selectively. We consider a more general specification of the testing technology and
show how Mirrlees’ conditions for the optimality of a quota scheme are a special case
of the conditions we place on the testing technology.

Our results are presented in the context of adverse selection in the labour market.
Applications to other environments including those with moral hazard are straightforward.
In our model, firms use a combination of tests and wage offers as a self-selection device.
Both testing accuracy and the percentage of applicants tested are decision variables for
the firm. In the limit, by testing workers with an arbitrarily small probability, very accurate
tests and the threat of large penalties, the full-information competitive equilibrium is
approached: workers receive wages equal to their marginal products and the existence
of competitive equilibrium is guaranteed.

This result does not depend on workers being risk-neutral. Nor do we require that
the tests are perfectly accurate. However, if testing accuracy is bounded, we show that

(a) the first-best allocation cannot be approximated;
(b) if an equilibrium exists, a strictly positive fraction of workers are tested and
expected testing costs are positive.

Result (b) requires the additional assumption that firms are able to impose unbounded
fines on workers.

In general, the fraction of applicants tested depends on the degree of risk aversion
and the ratio of the maximum feasible fine to testing costs. Polinsky and Shavell (1979)
show that if testing costs are sufficiently small then everyone will be tested. Guasch and
Weiss (1982b) prove that even if it is feasible to impose unbounded utility fines, the
optimal testing frequency may be strictly positive. We extend this result to demonstrate
that if the ratio of the maximum feasible monetary fine to testing costs is sufficiently
large, then workers will be tested with positive probability in equilibrium. A complemen-
tary result is proved by Bolton (1986): if the ratio of the maximum feasible fine to testing
costs is sufficiently small, then workers are tested with arbitrarily small probability.

2. THE MODEL

Consider an environment with n types of agents, indexed by i and varying according to
a parameter A;. One can think of A; as an individual’s risk class in an insurance model,
preference for a product in a discriminatory monopoly pricing model, or ability in an
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optimal income-tax model. We use the paradigm of risk-neutral firms operating in a
competitive labour market in which A; represents the worker’s productivity. The special
feature of our model is that a firm’s information is not fixed and exogeneous; rather, a
firm has available a testing technology which it can use to learn more about a worker’s
productivity. Although the setting we analyze is just one of many settings in which testing
can be important—it is not crucial that we analyze a labour market or that it be
competitive—we believe our chosen framework is easiest to follow and relates well to
the existing literature.

We assume that a worker knows his productivity with certainty. His marginal product
is the same both within and across firms. Firms know the distribution of productivity in
the labour force; they do not know the productivity of any particular worker. For
simplicity, we focus on the case where there are only two types of workers, labelled 1
and 2. Fraction « of the workers have high productivity, A,, and the remaining fraction,
1—a, have low productivity, A,. Let A= aA,;+(1—a)A, be the average productivity of
workers in this economy.

The structure of the market is as follows; in stage 1, each firm offers a single contract
which a potential employee can either accept or reject.® In stage 2, each worker chooses
at most one contract. Both the firm and the worker are bound to follow the terms of that
contract. There is free entry of firms into the industry so that in equilibrium it is not
possible for a firm to enter and earn positive profits. Since there is a constant returns to
scale technology the equilibrium number of firms is indeterminate.

A contract in our model is not simply a wage that the firm pays the worker. Rather,
a contract specifies

(i) a probability, 6, that the worker will be tested to determine (possibly inaccur-
ately) his productivity;
(ii) an expenditure, ¢, on the test if it is administered;
(iii) wages conditional on the worker’s test performance.

We assume that all of these variables are publicly observable and verifiable by the
courts so that the contract can be enforced by either party in court.* It is assumed
throughout that the firm and worker can commit not to renegotiate the contract after
stage 2. The ability to commit is important. As we will show, the choice of a contract
may reveal the worker’s productivity so that after the contract is chosen it will not be in
the interest of the firm to expend resources on testing the worker.

Each firm has access to the same testing technology. Let ¢t denote the expenditure
on testing a particular worker. The accuracy of the test is an increasing function of r; if
a firm spends enough additional resources on testing a worker, it will be less likely to
mistake a high-productivity worker for a low-productivity worker and vice versa. We
assume that there are two possible outcomes of the test which we label “pass” and “fail”".
Let p(t) be the probability that a high-productivity worker passes the test and let 1—q(t)
be the probability that a low-productivity worker passes the test. The test is called
uninformative if p(t) =1—q(t) =1/2. In this case both types of workers are equally likely
to pass or fail and test performance provides no information. We make the weak
assumption, which we maintain throughout the paper, that for some positive, finite ¢, say
f, the test is informative; more productive workers are more likely to pass the test,
p(f)>1-q(f).> Later, in Condition 1, we make a further assumption about the limiting
properties of the testing technology.

Since test performance is publicly observable and verifiable, wages can be conditioned
on test performance. Let W, be the wage the firm pays the worker if he passes the test
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and let W, be the wage if he fails. In-the event that the worker is not tested, he is paid
the passing wage, W, by assumption. This assumption simplifies the presentation without
affecting the basic results. Note that were test performance not publicly observable and
verifiable, firms would always claim that the worker failed if W, < W, and claim he passed
if W,>W,.

Thus, a contract, C,'is a quadruple

C=(6,1, W,, W)

specifying a probability of being tested, 6 € [0, 1], an expenditure on the test, ¢ € [0, ),
and wages W, € R and W, € R conditional on test performance and whether the worker
is tested. Define S=[0,1]x[0, ) x R? as the space of feasible contracts.

Consider now the conditions for equilibrium. Suppose M contracts are offered.
Denote this set by 'y, ={C,, C,..., Cy}. Workers accept from Iy, the contract that
maximizes their expected utility. We assume all workers have the same risk averse von
Neumann-Morgenstern utility function, U(W), where U'(W)>0 and U"(W)<0VW.
Given utility maximization by workers, 7(C|I"s) denotes the profits of a firm offering
contract C given that 'y, is the set of contracts offered. A free-entry Nash equilibrium is
defined as a set of M contracts '}, ={C¥, C%, ..., C¥} such that

for all firms offering contract C} and forallm=1,..., M,
a(CEIT¥)zw(C|T,) VCeST,={I',C),
7(C|T\)=0 VCgrl%,. 2)

(1)

The first condition is the Nash equilibrium condition which states that given the
contracts offered, no firm can introduce a contract that increases its profits. The second
condition follows from the assumption of free-entry; in equilibrium it must not be possible
for a firm to enter and earn positive profits.

There are two possible equilibrium configurations. A separating equilibrium is defined
as a free-entry Nash equilibrium in which low- and high-productivity workers accept
different types of contracts. Let C§ be the contract accepted by high-productivity workers
and let C¥ be the contract accepted by low-productivity workers. In a separating
equilibrium C§# C¥. A pooling equilibrium is a free-entry Nash equilibrium in which
both types of workers choose the same contract: C§ = C%. Note that at most two contracts
are offered in equilibrium’.

If a high-productivity worker accepts a contract C = (6, t, W,, W;) his expected utility,
which we write as V;(C) is

Vi(C)=[1-6(1—p())]IU(W,)+6(1—=p(1)) U(W)).

With probability (1— 6(1— p(t)), the worker receives wage W, either because with proba-
bility 1—6 he is not tested or because with probability 6p(t) he is tested and passes.
Alternatively, with probability 6(1—p(t)), the high-productivity worker who accepts this
contract is tested, fails, and receives wage W;.

If a low-productivity worker accepts contract, C, his expected utility, denoted by
V,(C), is

Vo(C)=(1-6g(1)) U(W,) + 6g(1) U(Wy).

Here q(t) is the probability that the worker fails the test if it is administered. Note that
if p(1)+q(t)>1and W,> W, then V,(C)> V,(C) for all Ce S.
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3. EQUILIBRIUM WITH TESTING

If tests were both perfectly accurate and costless, firms would always test to discover a
worker’s productivity. In reality, tests are both inaccurate and costly. One way of reducing
expected testing costs is to test only a fraction of the workers who agree to work for the
firm. But, if testing is infrequent, the penalty for failing must be large to discourage
workers from misrepresenting their productivities. Given some inaccuracy in testing,
these penalties expose workers to risk and hence reduce their expected utility if they are
risk averse. Thus, there is a tradeoff between reducing testing costs by testing only a
- fraction of workers and exposing risk-averse workers to income variability. Although in
general this tradeoff cannot be costlessly resolved, Proposition 2 demonstrates conditions
under which the equilibrium outcome is arbitrarily close to the full-information competi-
tive allocation. If the conditions for Proposition 2 are not met, an equilibrium may not
even exist; if it does exist, the equilibrium differs from the full-information allocation.
We begin by characterizing the properties that any equilibrium must satisfy and then
discuss conditions under which equilibrium will exist.

The following proposition, which is similar to a well-known result in Rothschild and
Stiglitz (1976), is useful in characterizing equilibrium.

Proposition 1. No pooling equilibrium exists.

Remark. The proof shows that at any putative pooling equilibrium, it would be
possible for a firm to enter, offer a contract that attracts only high-productivity workers,
and earn strictly positive profits, thus violating the definition of equilibrium.’

‘Proof. See Appendix. ||

Proposition 1 demonstrates that if an equilibrium exists it must separate different
types of workers. The following lemmas describe necessary characteristics of any separat-
ing equilibrium. Proposition 2 then presents sufficient conditions for a separating equili-
brium, and hence, any equilibrium to exist.

Lemma 1. In any separating equilibrium, a contract is offered that pays a wage of A,,
involves no testing, and is accepted only by low-productivity workers: C¥ = (0, 0, A,, 0).

Proof. Suppose there is a separating equilibrium in which low productivity workers
are tested. Since expected testing costs are strictly positive, the expected wage, W, must
be strictly less than A,. But then a firm could enter and offer a contract with no testing
and a guaranteed wage of A,—¢&> W. This contract earns positive profits as it attracts
all low-productivity workers and might even attract high-productivity workers. Hence,
the original contract could not have been part of a separating equilibrium. I

Lemma 1 characterizes the contract that low-productivity workers will accept in a
separating equilibrium. The equilibrium contract that attracts high-productivity workers
maximizes their expected utility subject to two constraints: (i) only a high-productivity
worker chooses that contract and (ii) profits from that contract are non-negative. Let
C¥=(6% t*, W}, W¥) be the contract that satisfies these conditions.® C¥} solves the
following program (P):
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(P) Maximizes,, w,,w, U(W,)—-60(1—-p(1))AU
subject to
U(A)z=U(W,)—0q(t)AU 3)
A zZW,—6(1-p(1)AW+ 6, (4)
where
AW=W,— W,

AU=U(W,)- U(W)).

Constraint (3) ensures that low-productivity workers prefer the certain wage of A, to the
contract C*. We refer to this as the self-selection constraint. Constraint (4) ensures that
profits are non-negative.

The maximization problem is written in a way that separates utility into two parts:
utility from the wage W, minus the expected utility cost from testing, 6(1—p(#))AU for
high-productivity workers and 6q(¢)AU for low-productivity workers. If the test is
uninformative (p(t)=1-q(t)=1/2), then these expected penalties are equal and it is
impossible for a firm to offer a contract that attracts one type of worker but not the other.
If, as assumed, the test is informative (p(¢) > 1—q(t)), then any contract involving testing
is more attractive to high-productivity workers than low-productivity workers. As testing
accuracy increases, p(t) and q(t) rise, the ratio of expected penalties increases and it
becomes easier to offer a contract that high-productivity workers will accept but that will
not attract low-productivity workers.

A necessary condition for existence of a separating equilibrium is that the program
(P) has a solution. A priori, there is no reason to believe that both constraints (3) and
(4) can be satisfied simultaneously. Lemma 2 demonstrates that if the test is informative
(p(t)+q(t)>1) and testing costs are less than the difference in worker productivities
(6t <A,—A,), then a solution to the maximization problem exists.

Lemma 2. For a given (6, t) such that p(t)+q(t)>1 and A,—6t> A,, the pair
(W,, W;) which solves program (P) is the unique pair which simultaneously solves equations
(3) and (4).

Remark. The proof proceeds in two parts. We first show that both constraints must
be binding at an optimum. Then we demonstrate that, under the conditions of the lemma,
there is a unique solution to the pair of binding constraints.

Proof. See Appendix. ||

Lemmas 1 and 2 establish properties that any separating equilibrium must satisfy if
it exists; however, an equilibrium may not exist. The following condition on the testing
technology guarantees that a separating equilibrium exists and that it approaches the
full-information competitive allocation.

Condition 1. lim,,[1—p(2)]/q(t)=0.
We define the “accuracy” of the test by the ratio in Condition 1. It is natural to

assume that no finite expenditure will result in a perfectly accurate test (p(t) =1, q(¢)>0).
Moreover, it seems likely that there would be decreasing returns to expenditures on
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testing: improving accuracy may require increasingly lage expenditures. Condition 1,
however, only requires that type I errors are eliminated asymptotically. Of course, type
I errors can be eliminated simply by passing everyone; thus, we require that p(t)
approaches 1 faster than q(t) approaches zero.

Proposition2. Under Condition 1, a free-entry Nash Equilibrium exists, the equilibrium
is separating, and the outcome approximates the full-information competitive equilibrium.
Two contracts are offered: one offers a single wage of A, with no test; the other offers to
test workers with arbitrarily small probability (6* > 0) and arbitrarily large testing expenditure
(t* > o), and pays a wage W which approaches A, and a wage W which approaches —co.

Remark. The basic structure of the proof is as follows. Let the expenditure per
worker tested, ¢, approach infinity so that p(¢) approaches 1. Then choose the frequency
of testing, 6, so that expected testing costs, 6t, approach zero; 6 must approach zero
faster than t approaches infinity.” When 6t is sufficiently small the conditions of Lemma
2 are satisfied and there exists a unique pair (W,, W;) satisfying both constraints. Observe
that the ratio of expected utility fines for the high-productivity worker to the low-
productivity worker is (1—p(t))/q(t), which approaches zero by Condition 1. Even
though U(W;) approaches negative infinity, the expected utility fine on a low productivity
worker is bounded by U(W,)— U(A,). Hence, the expected utility fine on the high-
productivity worker is less than [U(W,)— U(A,)](1—-p(t))/q(t), which becomes
arbitrarily small. His expected utility approaches U(A,), the same utility as under the
full-information competitive equilibrium.

Proof. See Appendix. ||

Proposition 2 establishes that Condition 1 is sufficient for equilibrium to approach
the full-information competitive equilibrium. Condition 1 is also necessary for this result
to hold with strictly risk-averse workers. High ability workers bear no risk because
6(1—p)AU approaches zero in the limit. If Condition 1 does not hold, then 6(1—p)AU -
0 if and only if 6gAU - 0. But if 6gAU approaches zero the proposed equilibrium set
of contracts will fail to separate workers as the self-selection constraint will be violated.

It is useful to compare the result in Proposition 2 to Mirrlees’ (1974) result discussed
earlier. In Mirrlees’ model, agents choose an effort level, u, which results in stochastic
output y=pu +¢& where ¢ is a random variable with cumulative distribution F(-). The
agent’s compensation is only a function of output since u and ¢ are not observable.

Mirrlees considers the following compensation scheme. Let u™* be the first-best level
of effort. The agent is penalized if his output falls below some quota, X. In our model,
we would say that he passes the test if his output is above X. Suppose the agent sets
w=pu* The probability of passing the test is 1— F(X —u™*). In our notation this is
p(0)'°. If the agent shirks by some amount, s, the probability of failing the test is
F(X —up*+5) or in our framework q(0).

By Proposition 2 if there is a test such that

(1-p(0))/q(0)= F(X —p*)/ F(X —p*+s5) =0, (5)

then the full-information equilibrium is attainable. Now as X —» —oo the ratio in (5)
approaches zero provided the hazard rate f(X)/F(X) approaches infinity. This is
precisely the condition Mirrlees imposes on the probability distribution to prove his result.
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Proposition 2 generalizes Mirrlees’ result to the case where observing output is costly
and testing is random. We can reinterpret Mirrlees’ condition on the hazard rate as

Pr {mistaken penalty}/Pr {correct penalty}- 0.

which is Condition 1.

The relevance of this result does not depend on the possibility of actually using
extreme punishments. The fact that the optimal testing scheme is only approached in
the limit implies that when fines and utilities are bounded, the optimum may be at the
boundary and not in the interior. This is more likely to be the case if the maximum fine
is large.

When Condition 1 is not satisfied, Proposition 3 establishes that the equilibrium
deviates from the first-best and 6 does not approach zero in any separating equilibrium.
Note, however, that Proposition 3 does not provide an existence result; under the
conditions of the proposition an equilibrium may fail to exist. Thus, Proposition 3 simply
characterizes the properties that any separating equilibrium must exhibit.

Proposition 3. As income approaches negative infinity, let relative risk aversion be
bounded away from zero, i.e.

limy ., _o WU"(W)/U'(W)=R>0.

Then for any fixed t for which p(f) <1, the probability of testing is strictly positive in any
separating equilibrium.

Proof. See Appendix. ||

This result depends on both unbounded utility and unbounded fines. In contrast,
Proposition 2 requires only unbounded utility fines''. If, for example, U(W) =In (W + k),
then the conditions for Proposition 2 are met while those for Proposition 3 are not; the
maximum fine is bounded below because the utility function asymptotes at an income
of —k.

Guasch and Weiss (1982b) demonstrate that if with unbounded utility fines are
feasible, the equilibrium probability of testing need not approach zero. Proposition 3
demonstrates that the frequency of testing is strictly positive if the maximum fine is
sufficiently large relative to testing costs. Bolton (1986) proves a complementary result:
if the maximum fine is sufficiently small relative to testing costs, the probability of testing
approaches zero.

One of the consequences of Proposition 3 is that an equilibrium may fail to exist.
Given that there are positive expected testing costs and that high-productivity workers
are exposed to risk, there may exist a pooling contract that makes both types of workers
better off; but the pooling contract cannot be an equilibrium by Proposition 1. Hence,
it may be possible to find a separating set of contracts that destroys any pooling equilibrium
and a pooling contract that destroys any separating equilibrium (see Rothschild and
Stiglitz (1976)).

A final point involves the way we model workers’ information. Underlying our results
is the assumption that workers know their own productivity with certainty. Suppose
instead that a worker receives only a noisy signal of his productivity but that a high-
productivity worker is more likely to receive a favourable signal. Ex post, only a worker’s
productivity can be verified by a test, not his prior belief about his productivity. Thus,
even with accurate testing, workers will be exposed to some risk. However, the expected
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penalty on a worker receiving a favourable signal is finite and proportional to the
probability that he overestimates his productivity. Thus, if Condition 1 holds and workers
are nearly certain about their true productivity, then the equilibrium will be near the
first-best allocation.'”

4. CONCLUDING REMARKS

The purpose of this paper has been to explore the role of testing in models of asymmetric
information. We demonstrated conditions under which testing for underlying characteris-
tics can overcome adverse selection problems and lead to the full-information competitive
equilibrium. This paper also generalises of Mirrlees (1974) result on the optimal use of
infinite fines. Where testing cannot fully resolve the problems associated with asymmetric
information, we outline the source of the difficulties. Our results, developed in the context
of a labour market, can be directly extended to other environments. In problems with
asymmetric information, testing to discover an agent’s chosen action or underlying
characteristic may significantly reduce the cost of moral hazard and adverse selection.

APPENDIX

Proposition 1.  No pooling equilibrium exists.

Proof. There are two cases to consider: (a) a pooling equilibrium in which there is no testing and (b) a
pooling equilibrium in which there is testing.

(a) Suppose there is a pooling equilibrium in which there is no testing. Then the wage must be A We
show that there exists a contract in which workers are tested with positive probability that attracts only
high-productivity workers and earns positive profits. The proof is divided into three steps:

Step 1. Suppose that p(0)+ q(0) > 1; at ¢ =0, the test is informative. Let a firm offer this test with positive
probability and make the following wage offer conditional on test performance:

W,=A+5,  W,=A-ps.
The expected value of this wage offer to a low productivity worker is
A+8[1-(1+B)6q].

Choose 1+ B = 1/6q so that the expected value of this wage offer is just A. Since this is a lottery with mean A
and the worker is risk averse, he will not accept the proposed contract.

On the other hand, for small enough 8, the high-productivity worker will accept this contract. To see this,
take a Taylor series expansion around A. His expected utility from accepting the contract is approximated
arbitrarily closely by

U(A)+8U'(A)[1-6(1-p)(1+B)]= U(A) +(8/q) U'(A)lq+p—1]1> U(A).

His expected salary is greater than A since the test is informative. Hence, for arbitrarily small § the high-
productivity worker will accept this contract, whereas the low-productivity worker will not. Since the firm
receives A, at an arbitrarily small cost above A, the firm earns strictly positive profits, contradicting the
assumption that the pooling contract was an equilibrium.

Step 2. Step 1 established that if testing is free, a contract can be offered that attracts only high-productivty
workers and earns positive profits. But now suppose testing is not free but that there exists a (6, t) pair such
that A, —6t> A. Then the above contract still earns positive profits because, although the firm earns only
A, — 60t per worker, it pays out only marginally more than A in expected wages.

Step 3. By assumption there exists some finite 7 such that p(7) + ¢(7) > 1. Choose 6 such that A, — 67> A
By Step 2, the proposed contract will earn positive profits. Hence, there can exist no pooling equilibrium
without testing.

(b) Consider a pooling equilibrium in which there is testing. Suppose the proposed pooling contract is
given by C= (é, f, W,,, Wf). Consider the following offer C'=(6', t', W;,, W}) where

A

0'=6, =i W,=W,+5 W;=W,—ps.
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For small §, the expected utility to the low-productivity worker from accepting contract C’ is approximated
arbitrarily closely by
(1= 6g)U(W,) +6qU(W,)+8[(1- 6q) U'(W,) - BoqU'( W})].
Choose
B=[(1-6g)U'(W,))/[6qU'(W,)]
so that the low-productivity worker is indifferent between contract C' and contract C. In this case, the
high-productivity worker prefers contract C’ over contract C. His expected utility from C’ is approximated by
[1-6(1-p)IU(W,)+0(1~p)U(W,) +8{[1-6(1-6(1—p)]U'(W,) - BO(1 - p) U'(W)}
If the last term is positive then high-productivity workers prefer contract C’. Substituting in the above value
of B shows the final term is positive as
U'(W,)8[q+p—11/q>0

since the test is informative. Hence, there exists a contract that attracts only high-productivity workers, paying
them expected wages slightly in excess of A— 6t and earning A, — 0t per worker. Since A,> A, this contract
earns positive profits contradicting the assumption that the original contract was part of an equilibrium. ||

Lemma 2. For a given (6, t) such that p(t)+q(t)>1 and A, —0t> A,, the pair (W,, W;) which solves
program (P) is the unique pair which simultaneously solves equations (3) and (4).

Proof.
Step 1. Consider the Lagrangian to the optimization problem (P),

L=U(W,)-0(1—p(1))AU+y[U(A,)- U(W,)+6q(1)AU]+u[A, - W, +6(1—p(1)AW —61],
where y and u are the Lagrange multipliers on constraints (3) and (4), respectively. Inspection of the first-order
conditions reveals that both y and u must be positive.
oL/oW, =[1-6(1-p)IU'(W,)—y(1-69) U'(W,) - u[1-6(1-p)]=0 (A.1)
aL/aW, = 0(1-p)U'(W)) - y0qU'(W,) — u6(1 - p) =0 (A2)
where for shorthand we write p and q instead of p(t) and q(t).

(a) If both constraints were slack, then it would be optimal to set W, =00 and W, =co. But this violates
the profit constraint (4).

(b) Suppose only constraint (4) is binding. Then y=0 and (A.1) and (A.2) together imply U’( W,)=
U'(W;)=u so that W,=W,. But if W, =W, and (4) is binding, then W,= W, = A, —6t. By assumption
A, —0t> A,; therefore, the self-selection constraint (3) is violated.

(c) Suppose only constraint (3) is binding'so that u =0. Then the first-order conditions (A.1) and (A.2)
reduce to:

dL/aW, ={[1-6(1-p)]-y(1—069)}U'(W,)=0 (A.3)
aL/aW; ={(1-p) - yqtU'(W;) =0 (A4)

Solving (A.4) for y and substituting into (A.3) yields the contradiction
aL/aW,=(1/q)[q+p—1]U'(W,)>0 (A.5)

since the test is informative.
Hence, both y and w are strictly positive which implies that both constraints must be binding at an optimum.
Step 2. We now show that for a given (6, t) such that A, — 61> A, there is a unique (W,, W,) pair that
solves equations (3) and (4). Equation (4) defines a linear relationship between W, and W,

—01—[1—9(1—p)]Wp

6(1-p) ’
Substituting this expression into (3), we can write the low-productivity worker’s utility solely as a function of
W,. Denote this utility by V,(W,). An increase in W, lowers the low-productivity worker’s utility for two

reasons: (i) The resulting adjustment to W, is actuarially fair to the high-productivity type, but unfair to the
low-productivity type; (ii) The increased spread between W, and W, imposes greater risk:

dv.
dWZ =(1-6q)U'(W,)—q[1-6(1-p)IU'(W(W,))/(1-p) (A.6)

P

=-U (W (W,))p+q-1]1/(1-p)<O0. (A.6")

Ay
Wi (W,) =
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The inequality follows as W, = W,(W,)) implies U'(W,) = U'(W;(W,)) and p+4g>1 implies g[1—-6(1-p)]>
(1=p)(1-6q). Moreover, as the spread between W, and W, increases, V,(W,) falls at an increasing rate. At
W, = A, — 01, the self-selection constraint is violated: W, = W, and V,(W,)> U(A,) as A, — 6t> A,. By (A.6),
since V,(W,) monotonically falls (at an increasing rate), there must exist a unique solution to V,(W,)=
U(Ay). |

Proposition 2. Under Condition 1, a free-entry Nash Equilibrium exists, the equilibrium is separating, and
the outcome approximates the full-information competitive equilibrium. Two contracts are offered: one offers a
single wage of A, with no test; the other offers to test workers with arbitrarily small probability (6*-0) and
arbitrarily large testing expenditure (t* - ), and pays a wage W} which approaches A, and a wage W¥ which
approaches —oo.

Proof. Choose t=1/v/6 and let §>0. As 60, t >0, but 6t 0. Since t->, [1—p(1)]/q(t)~>0.
Applying Condition 1 to equation (A.6') in the proof of Lemma 2 shows that the absolute value of
dVy,(W,)/dW, - as t->co:

U'(W(W,))[p(t)+q(t)—1]
1-p(1)

- U'(A)[p(1)+q(1)-1]
1-p(1) ’

|dV,(W,)/dW,|=

>

Therefore,
lim, o |dVy(W,)/dW,|Z U'(A)) lim,, |q(t)/ (1 - p(t)) — 1| > co.

Recall from the proof of Lemma 2 thatat W, = A, — 61, V,(W,) = U(A, — 6t) and the self-selection constraint
is violated. Since the absolute value of the derivative of V,(W,) becomes arbitrarily large at all values of
W,z A, —6t,and dV,(W,)/dW, <0, an infinitessimal increase in W, lowers V,(W,) down to U(A,), satisfying
the self-selection constraint. In the limit, W, must be arbitrarily close to A, — 6¢ and thus to A, as well since ¢ 0.

Now rewrite the high-productivity worker’s expected utility, defined by V|, using the self-selection constraint
as an equality:

Vi=U(W,)-[(1-p(1)/q(){U(W,) - U(A,)}

Taking the limit as t > oo yields, V; > U(A,) since by Condition 1, (1-p)/q -0 while U(W,) — U(A,) isbounded.

Thus, we have shown that low productivity workers accept the contract that guarantees them a wage of
A, and high-productivity workers accept a contract which guarantees them an expected utility that comes
arbitrarily close to U(A,). Finally, we note that no pooling contract can break this equilibrium since it is not
profitable to pay both types of workers A,. ||

Proposition 3. As income approaches negative infinity, let relative risk aversion is bounded away from zero,

limy, _, _, WU"(W)/U'(W)=R>0.
Then for any fixed f for which p(f) <1, the probability of testing is strictly positive in any separating equilibrium.
Proof. We proceed by contradiction and show that the limiting contract as 6 - 0 cannot be an equilibrium.
Assume that the equilibrium occurs in the limit as 6 > 0. Repeated application of I’'Hopital’s rule leads to the

contradiction that for the Lagrangian in Lemma 2, 9L/36 is positive in the limit as 6 > 0.
The necessary first-order condition for 6 is given by

aL/36 = —[1-p(D)—yq(DJAU +p[(1-p(D))AW-1]=0 (A7)
Substituting the first-order condition for W;, (A.2), into the above equation yields,
AWU'(W)-AU 7 }
U'(W)) 1-p()

BL/00=M(1—P(f)){ (A8)

As monitoring becomes less frequent, the penalty for failing must become increasingly severe to satisfy
the self-selection constraint: § -0 implies W, - —c0. To demonstrate that dL/96 is positive near § =0, we show
that under the conditions of the proposition, the first term in brackets, which we denote by Z, becomes unbounded
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as 0> 0. The numerator of Z, AWU'(W;)— AU, is infinite in the limit since the first term approaches infinity
faster than the second term. To see this, note that by I’Hopital’s role:

" AWU'("V,f)_l. AWU"(W,)U'(W,)

MWy T e T g
=1+tlimy, . o [(W,= W,)/ W[ W,U"(W,)/ U'(W,)]
=1+R (A9)

The denominator of Z also approaches infinity. It remains to be shown that the numerator approaches infinity
faster than the denominator. Again, by I’Hopital’s rule,

AWU'(W))-AU AWU"(W,)

limy, ,_o = =AW =c0. A.10
T Uw) U(wy) (A10
Substituting the result of (A.10) back into (A.8) reveals
r
limwf*_maL/a():,u.(l—p(i)){AW——_}>0. (A.11)
1-p(7)

Hence for some 6%, 9L/30 >0 for all 6 < 6*. This contradicts the assumption that 6 =0 is the limiting value
of the solution to the program (P), when ¢ is constrained to equal 7. ||
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NOTES

1. For examples of this literature see Mirrlees (1976), Stiglitz (1982) (optimal income taxation), Guasch
and Weiss (1981), Nalebuff and Stiglitz (1983) (labour markets), Stiglitz and Weiss (1981) (capital markets),
Rothschild and Stiglitz (1976) (insurance markets), and Stiglitz (1975), Spence (1974) (education).

2. This contrasts with the simplest specification of the law-enforcement problem. For crimes without
social value, the punishment is used as a deterrent and should be large enough to prevent all crimes. Thus, in
equilibrium fines are never imposed and hence they do not impose risk on anyone. See Becker and Stigler
(1974) and Polinsky and Shavell (1979).

3. We focus on the case where each firm can make only one offer; allowing firms to make multiple,
simultaneous offers would not affect any of the results.

4. A variable is said to be publicly observable if all parties to the contract can observe it; a variable is
said to be verificable if it is observable by the courts. Here, the optimal contract would specify values for these
variables and a penalty if the contract is breached. Hence, provided court costs are relatively small, there will
never be breach in equilibrium because all breaches will be litigated.

5. This testing technology differs from the one analyzed in Gausch and Weiss (1982a). In their model,
tests are perfectly accurate in the sense that all workers who pass the test have ability above some cutoff point.
Firms choose the passing grade, not the precision of the test. Guasch and Weiss analyze the distribution of
cutoff points across firms.

6. In examining competitive equilibrium, we assume that each contract is offered by more than one firm.
As a result, if one firm offers contract C rather than C#¥, workers do not lose the option of C¥. Thus, T, has
all of the contracts in '} and C.

7. Here we ignore (semi-pooling) equilibria in which, with positive probability, different types of workers
accept the same contract. It is straightforward to generalize Proposition 1 to show that no semi-pooling equilibria
exist.

8. These conditions are only necessary and not sufficient. Given C*, no other separating contract earns
positive profits. However, profitable pooling contracts may exist.

9. Note that the actual limit of the sequence § -0 is not an equilibrium since there is no testing.

10. It is p(0) since output is costlessly observable and the test is free.

11. The proof of Proposition 3 depends on taking limiting values as W, > —oo. This approach is invalid
if AW is bounded.

12. A more formal discussion of this issue can be found in our working paper, Nalebuff and Scharfstein
(1984).
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